12 research outputs found

    Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology

    Full text link
    Stain variation is a phenomenon observed when distinct pathology laboratories stain tissue slides that exhibit similar but not identical color appearance. Due to this color shift between laboratories, convolutional neural networks (CNNs) trained with images from one lab often underperform on unseen images from the other lab. Several techniques have been proposed to reduce the generalization error, mainly grouped into two categories: stain color augmentation and stain color normalization. The former simulates a wide variety of realistic stain variations during training, producing stain-invariant CNNs. The latter aims to match training and test color distributions in order to reduce stain variation. For the first time, we compared some of these techniques and quantified their effect on CNN classification performance using a heterogeneous dataset of hematoxylin and eosin histopathology images from 4 organs and 9 pathology laboratories. Additionally, we propose a novel unsupervised method to perform stain color normalization using a neural network. Based on our experimental results, we provide practical guidelines on how to use stain color augmentation and stain color normalization in future computational pathology applications.Comment: Accepted in the Medical Image Analysis journa

    Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps

    Get PDF
    Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical management of men with prostate cancer. Despite this, the high grading variability among pathologists leads to the potential for under- and overtreatment. Artificial intelligence (AI) systems have shown promise in assisting pathologists to perform Gleason grading, which could help address this problem. In this mini-review, we highlight studies reporting on the development of AI systems for cancer detection and Gleason grading, and discuss the progress needed for widespread clinical implementation, as well as anticipated future developments.Patient summaryThis mini-review summarizes the evidence relating to the validation of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate cancer in biopsies, and highlights the remaining steps required prior to its widespread clinical implementation. We found that, although there is strong evidence to show that AI is able to perform Gleason grading on par with experienced uropathologists, more work is needed to ensure the accuracy of results from AI systems in diverse settings across different patient populations, digitization platforms, and pathology laboratories.</p

    Artificial intelligence for diagnosis and Gleason grading of prostate cancer: The PANDA challenge

    Get PDF
    Through a community-driven competition, the PANDA challenge provides a curated diverse dataset and a catalog of models for prostate cancer pathology, and represents a blueprint for evaluating AI algorithms in digital pathology. Artificial intelligence (AI) has shown promise for diagnosing prostate cancer in biopsies. However, results have been limited to individual studies, lacking validation in multinational settings. Competitions have been shown to be accelerators for medical imaging innovations, but their impact is hindered by lack of reproducibility and independent validation. With this in mind, we organized the PANDA challenge-the largest histopathology competition to date, joined by 1,290 developers-to catalyze development of reproducible AI algorithms for Gleason grading using 10,616 digitized prostate biopsies. We validated that a diverse set of submitted algorithms reached pathologist-level performance on independent cross-continental cohorts, fully blinded to the algorithm developers. On United States and European external validation sets, the algorithms achieved agreements of 0.862 (quadratically weighted kappa, 95% confidence interval (CI), 0.840-0.884) and 0.868 (95% CI, 0.835-0.900) with expert uropathologists. Successful generalization across different patient populations, laboratories and reference standards, achieved by a variety of algorithmic approaches, warrants evaluating AI-based Gleason grading in prospective clinical trials.KWF Kankerbestrijding ; Netherlands Organization for Scientific Research (NWO) ; Swedish Research Council European Commission ; Swedish Cancer Society ; Swedish eScience Research Center ; Ake Wiberg Foundation ; Prostatacancerforbundet ; Academy of Finland ; Cancer Foundation Finland ; Google Incorporated ; MICCAI board challenge working group ; Verily Life Sciences ; EIT Health ; Karolinska Institutet ; MICCAI 2020 satellite event team ; ERAPerMe

    Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies-Current Status and Next Steps

    Get PDF
    Diagnosis and Gleason grading of prostate cancer in biopsies are critical for the clinical management of men with prostate cancer. Despite this, the high grading variability among pathologists leads to the potential for under-and overtreatment. Artificial intelligence (AI) systems have shown promise in assisting pathologists to perform Gleason grading, which could help address this problem. In this mini-review, we highlight studies reporting on the development of AI systems for cancer detection and Gleason grading, and discuss the progress needed for widespread clinical implementation, as well as anticipated future developments. Patient summary: This mini-review summarizes the evidence relating to the validation of artificial intelligence (AI)-assisted cancer detection and Gleason grading of prostate cancer in biopsies, and highlights the remaining steps required prior to its widespread clinical implementation. We found that, although there is strong evidence to show that AI is able to perform Gleason grading on par with experienced uropathologists, more work is needed to ensure the accuracy of results from AI systems in diverse settings across different patient populations, digitization platforms, and pathology laboratories

    The Clinical Value of Lymphatic Micrometastases in Patients with Non-small Cell Lung Cancer

    Get PDF
    Contains fulltext : 88963tjan-heijnen.pdf (publisher's version ) (Closed access)INTRODUCTION: In early stage non-small cell lung cancer (NSCLC), presence of lymphatic micrometastases and isolated tumor cells, primarily detected by immunohistochemistry, is suggested to be a prognostic factor. However, there is no consensus whether immunohistochemistry should be used routinely in lymph node assessment.The goal of our study was to determine whether recurrent disease is associated with the presence of lymphatic micrometastases and/or isolated tumor cells, at the time of the lung resection. METHODS: We retrospectively analyzed the prevalence of lymphatic micrometastases and/or isolated tumor cells in two groups of patients, who underwent a curative resection for early stage NSCLC. Group I had a follow-up of 5 years without recurrent disease. Group II consisted of a matched group of patients with recurrent disease. Patients were originally classified as having negative mediastinal lymph nodes.All lymph nodes obtained by mediastinoscopy and thoracotomy were re-examined by serial sectioning and immunohistochemistry. RESULTS: Micrometastases and/or isolated tumor cells were found in one of 16 patients in group I, which was significantly different from six of 16 patients in group II. (Fisher exact test, 4.6; p, 0.04; risk ratio, 2.4).Serial sectioning and immunohistochemistry did not change N-stage for the single patient in group I, in contrast to all six patients in group II. CONCLUSION: Presence of lymphatic micrometastases and/or isolated tumor cells is associated with distant recurrence in patients with early stage NSCLC. We recommend the routine use of serial sectioning and immunohistochemistry in lymph node assessment to improve the accuracy of staging.1 augustus 201

    Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists

    No full text
    The Gleason score is the most important prognostic marker for prostate cancer patients, but it suffers from significant observer variability. Artificial intelligence (AI) systems based on deep learning can achieve pathologist-level performance at Gleason grading. However, the performance of such systems can degrade in the presence of artifacts, foreign tissue, or other anomalies. Pathologists integrating their expertise with feedback from an AI system could result in a synergy that outperforms both the individual pathologist and the system. Despite the hype around AI assistance, existing literature on this topic within the pathology domain is limited. We investigated the value of AI assistance for grading prostate biopsies. A panel of 14 observers graded 160 biopsies with and without AI assistance. Using AI, the agreement of the panel with an expert reference standard increased significantly (quadratically weighted Cohen’s kappa, 0.799 vs. 0.872; p = 0.019). On an external validation set of 87 cases, the panel showed a significant increase in agreement with a panel of international experts in prostate pathology (quadratically weighted Cohen’s kappa, 0.733 vs. 0.786; p = 0.003). In both experiments, on a group-level, AI-assisted pathologists outperformed the unassisted pathologists and the standalone AI system. Our results show the potential of AI systems for Gleason grading, but more importantly, show the benefits of pathologist-AI synergy
    corecore